Lesson 10.3 Area of Other Polygons

Give the minimum number of identical triangles you could divide each regular polygon into so that you could find the area of the polygon.

1.

2.

Use the given information to find the area of each regular polygon.
3.

4.

Solve.

5. A playground in the shape of a regular pentagon has an area of 292.5 square feet. Find the length of each side of the playground.

Name:
Date:
6. A wooden frame in the shape of a regular hexagon is 93.6 square inches. The length of each side of the hexagon is 6 inches. Find the height of the hexagon.

7. A regular hexagon is formed by 3 identical rhombuses. The height of each rhombus is 6 centimeters and its base is 7 centimeters. Find the area of the hexagon.

8. Find the area of the regular polygon.

\qquad
9. Use the given information to find the area of the regular polygon $A B C D E F G H$.

10. The figure is formed by a regular pentagon and a triangle. Find the area of the figure.

15.

The coordinates of point C are $(2,-2)$. Base $=5$ units, height $=5$ units
Area of parallelogram $A B C D$
$=5 \cdot 5=25$ square units
16.

$R S=3$ units, $P Q=9$ units,
height $=5$ units
Area of trapezoid PQRS
$=\frac{1}{2} \cdot 5(3+9)=30$ square units
17. $\frac{1}{2} \cdot 8(J N+20)=136$
$4(J N+20)=136$
$J N=136 \div 4-20=14$ miles
18. $\frac{1}{2} \cdot h(20+28)=312$
$h=312 \cdot 2 \div 48$

$$
=13 \text { yards }
$$

Area of triangle $A B C$
$=\frac{1}{2} \cdot 20 \cdot 13=130$ square yards

Lesson 10.3

1. 7 triangles
2. 10 triangles
3. Area of a triangle
$=\frac{1}{2} \cdot 17.5 \cdot 12$
$=105 \mathrm{~cm}^{2}$
Area of the pentagon
$=5 \cdot 105$
$=525$ square centimeters
4. Area of a triangle
$=\frac{1}{2} \cdot 12 \cdot 10.3$
$=61.8 \mathrm{in}^{2}$
Area of the hexagon
$=6 \cdot 61.8$
$=370.8$ square inches
5. The pentagon is made up of 5 identical triangles.
Area of each triangle
$=292.5 \div 5=58.5 \mathrm{ft}^{2}$
1 side of the pentagon
$=\frac{58.5 \cdot 2}{9}=13$ feet
6. The hexagon is made up of 6 identical triangles.
Area of each triangle
$=93.6 \div 6=15.6 \mathrm{in}^{2}{ }^{2}$
Height of each triangle
$=\frac{15.6 \cdot 2}{6}=5.2 \mathrm{in}$.
Height of the hexagon
$=5.2 \cdot 2=10.4$ inches
7. Area of the hexagon
$=3 \cdot(7 \cdot 6)$
$=126$ square centimeters
8. Area of a triangle
$=\frac{1}{2} \cdot 8.4 \cdot 13$
$=54.6 \mathrm{~cm}^{2}$
Area of the polygon
$=54.6 \cdot 10$
$=546$ square centimeters
9. Area of trapezoid $A B H G$
$=$ Area of trapezoid CDEF
$=\frac{1}{2}(10+24) \cdot 7$
$=119 \mathrm{~cm}^{2}$
Area of rectangle BCGF
$=24 \cdot 10$
$=240 \mathrm{~cm}^{2}$
Area of the polygon
$=119+119+240$
$=478$ square centimeters
10. Area of triangle $O A B$
$=\frac{1}{2} \cdot 18 \cdot 26$
$=234 \mathrm{~cm}^{2}$
Area of the pentagon
$=234 \cdot 5$
$=1,170 \mathrm{~cm}^{2}$
Area of triangle $A E F$
$=\frac{1}{2} \cdot 42.3 \cdot 24.7$
$=522.405 \mathrm{~cm}^{2}$
Area of the figure
$=1,170+522.405$
$=1,692.405$ square centimeters
Extra Practice Course 1B
